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In the case of series (5) which has been obtained, it is characteristic that each 
homogeneous solution is represented in the form of a sum for any instant of time t. 

We now present the results of numerical calculations in the case when 

e = 1, f(&t) = 'p (0 g (0, e (6) = r, g (0 = R (f) - R (t - 0.2) 

where H(t) is the Heaviside function. The time ale is adopted for To where c=vrp is 
the velocity of propagation of shear waves. 

The stress distribution TV,, in time at the point &= f=08 (Fig.1) reflects the 
transient nature of the change in the stressed state. In the interval t E 10.2. 0.41, the 
behaviour of the stresses rEv at this point is only slightly different from the behaviour of 
the function g (0. However, during the interval when the perturbations are reflected from 
the boundaries E=fi, the stresses change rapidly both in magnitude and in sign. During 
the intervals of time after the passage of the rear front of the wave as time increases, the 
oscillation of the stresses increases and changes sign. 

The distribution of the stresses with respect to 5 at the instant of time t= 2.5 when 
f= 0.0.5,1 (curves 1, 2 and 3) is shown in Fig.2. When c=O, if the "jumps" in the stresses 
when &=O.S and E=0.7 are insignificant in magnitude, then, as 5 increases, they become 
larger and are accompanied by a change in sign. 

When t = 2.5, curves 1-3 in Fig.3 reflect the stress distribution with respect to 6 when 
e = 0.2 (curve 1 (~OT~J,~ = 0.5 (curve 2, (iOrEv), and f = 0.8 (curve 3). 
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AN APPROACH TO SOLVING THE PROBLEM OF A CRACK 
IN A WEDGE-SHAPED PART OF A PLANE* 

V.A. SITNIK 

In a development of previous obtained results of 
crack which emerges orthogonally onto the boundary of 

the solution of a problem concerning a 
a half-plane /l/, the problem of a crack 

of finite length on the axis of symmetry of one of the wedge-shaped parts of a plane is con- 
sidered. The indices of the singularities of the solution are determined at both vertices of 
the crack and expressions are presented for the coefficients accompanying these singularities. 
Numerical values of the coefficients of the stress intensity are obtained in the case when 
the parts are opened at a right angle and there is a constant load on the edge of the crack. 
These results are in agreement with data cited in the literature for a piecewise homogeneous 
plane with a slit which emerges orthogonally onto the line where the half-planes join /2/. 

Fig.1 

Previously /3/, a solution of the functional Wiener-Hopf equation 
was presented in closed form for an analogous problem and an 
expression was given for the coefficient accompanying the fractional 
power singularity of the solution, that is, at the right end of the 
slit. Most attention will therefore be paid to isolating the 
singularities of the two vertices of the crack and to determining 
the coefficients accompanying these singularities. 

1. Formulation of the problem. 
Riemann problem. 

Reduction to the 

A crack of finite length is considered which emerges along the 
axis of symmetry of one of the wedge-shaped parts of a piecewise 
homogeneous plane onto the line where the materials are joined (Fig. 
1). A selfbalanced load ae(r,O)= --f(r) is applied to the edges of 
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the crack. The derivative of the displacements in the circumferential direction has a dis- 
continuity on passing across the crack 

2; [c (7, - 0) - u (r 
x-l I 

7 t (J)l -- ~ -25;- ‘F (,‘) (1.1, 

:< - \’ E 
x=-1 I” %(1_tIyj 

Here Y is Poisson's ratio, E is Young's modulus and v(r) is an unknown function which 
has singularities as r-0 and r-2 (a crack with a reduced length 1- 1 is considered 
without any loss of generality). 

In accordance with the boundary conditions (1.1) and the symmetry of the problem about 

the line 8=0, 8=n, r>o, we write the condition for the undeformed character of the line 

(0 = If, r > 0; 0 = 0, r > 1): do' (r, O)/dr -2 0 and, when R= O,O<r<l, we have r/r (r, $ (l)ii,r = -(4p)-' (vi- 1) 

q W.' 
The rest of the formulation of this problem is identical to that presented in /3/: 

(0") - cr,,, = <U> = (a) = 0 (H = 0,); 

7," (r, 0) = U (0 = 0, n); o0 = --f (r) 

when O=O,O<r<l. The angle brackets denote a discontinuity in the values of the correspond- 
ing components of the displacements and stresses on crossing the line where the materials are 

joined. 

Taking account of the well-known* (*Tikhonenko L.Ya., Boundary value problems for partial 
differential equations in wedge-shaped domains leading to the Karleman problem, Candidate 

Dissertation, Odessa Gos. Univ., Odessa, 1975.) representations of elastic displacements and 
stresses in terms of Mellin integrals for problems with wedge-shaped domains (the integration 

is carried out along the straight line parallel to the imaginary axis) 

21Lu=&- [PZ(A 
!, 

OSP - BOCI) + (x + P) (- Am i BGI)] r-’ dp 

+u = & \ [PZ (As2 + &a) + (x -f- P) (&l + BlSl)l T-P dP 

(Jez=& 5 PPZ (&, + &IS, -i- ACI + BLSI) r-l-‘I dP 

si = sin pi8, ci = cos ~$3, PI = p + 1, pz = p - 1 

we arrive at the Riemann problem by solving two systems of algebraic equations with respect 

to four unknown functions (Y+(r) is an unknown integrable function): 

a_ (PO) G (PO) : 4nF_ (PO) -i- y+ (PO) 

- 1<Repo<O, a_ (P) -= 1 T (r) rPdr 

F_(P) = j f P)rPdr, 

a 

Y+ (P) = j y+ (r) P’dr 
0 1 

(1.2) 

00 (r, 0) = 
f 

- f(r). O<r< 1 
-Y+ (r), r> 1 

The coefficient for the problem for O,=n/2 is identical to that cited in /2/. It 
should be noted that the functional Eq.(3) was written in /3/ in the domain -*<Rep<1 and 

G (p) = ‘ipnff-’ l(PlO,’ + 0,2) (P&3 - 4) - (Pe%3 + G) (PI%’ - W”)l 

ool = P~VI - A~P~P (.h), 0 ' - A IAzp (2) + A+' (2p)l, %' = 
pz [te WV’, + Asp (2~ )I 2 3 lo- I* = A I-Alp' (2~) + ASP' (2)l 

mu3 = A3p (2p), e? = Vz + Arp (2~1) 
mu4 = -Asp' (Zp), 01~ = V, tg np - Asp' (Zp,) 

p (z) = cos ~0, + sin zO1 tg np, p' (2) = 8,-‘dpidz 

A, = p=k, - k,, AZ = p (k, - k,), As = Ip,k, 

Ar = hpk,, Vi = i f hki, i = 1, 2 

the strip was defined by the inequalities --e,< Rep<% where O<ei<l,i= 1.2 and it was not 
indicated how Q were chosen. However, by taking account of the singularity in the stress 
field 0 ~(-1.0) at the left end of the cut and the behaviour at infinity, it is necessary 
to indicate the strip of regularity of the function O_(p) in a somewhat refined form: --1< 
Fsep<o. 

2. Isolation of the singularities at the two vertices of the cut and 
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expressions for the coefficients accompanying these singularities. Let US shift 
the strip of regularity of the function @-(po):O<Repo<l by making the substitution PO=P~+~ 

By writing G(p,) in the form 

G (PO) = sV (~o)i tg np, (2.0 

it can be shown that V(pO) -t 1 (I p. I - ~4, Iw V (~dlZ$m” = 0, max (a, uo, VP) < 0 < 1 where G (oO) = 0, (1" c R, 
0<0,<1 andf(r) == o(r-)and, moreover , it is possible that O<a<l. In this case, factorization 

t-'(Po) = x+ (PO)/= (PO) (2.2) 

taking account of the representation 

tg np = A+ (P) A- (P) D (P) 
r (Yz - P) 

A+ (PI = r j2_-pf , A-W- 
r (Y2 + P) 

r (PI 
2-P 

D (PI = ‘,% _ p 

(here, I’ (P) is a gamma-function) enables one to rewrite condition (1.2) in the form 

@-(PO) 
If (pof A- (PO) X- (FO) 

= 4F-(PLW(Po) + T+ (Po)A+(Pc) 
x+ (PO) a+ (PO) 

(2.3) 

The subsequent manipulations are analogous to those carried out in /l/ and hence we 
immediately write out the solution of the Riemann problem: 

@-(PI = [+- -We (P)] X- (P) A- (P) IJ (Pf 

o+im 

Q (p) = -& j 

o-ice 
F- gys) & 

Taking account of the representation of the solution (2.4) at infinity, we write the 
unknown derivative of the discontinuity in the displacements at the right end of the cut in 
the form 

A0 = cf 4&4+ (-_Y)/x+ (-U), f(r) = 'lrv 

p = ‘/z + E, e 0, E>O 

Fig.2 

0 Ii? 20 

Fig.3 

where c is a constant which is determined from the condition of the closedness of the crack 

The original function 

is determined by closure of the integration contour in the R+ half-plane (Fig.2) which is 
cut along the ray Rep<O,Imp=O. 

We note that it was not possible in /3/ to obtain such a representation by applying an 
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inverse Mellin transform to Q- (P). 
At the vertex of the cut, which emerges onto the line where the parts of the plane are 

joined, we obtain, when expressions (2.1)-(2.3) are taken into account, 

'p (r) = B& $ o (&). 5 = -max (a. aO), r + 0 

B = 4xlG(--y) (5 = --a) 

B = res [ & , p = s?o 1 Xf (00) 
A+ (00) 

'4?+-- y) 

(v + QJx+(- Y) 1 (f 
When account is taken of the singularity in p(r) as r-0, this enables one to establish 

the dependence ofthedisplacement field and the stress field on the different combinations 

of materials. The singularity in the derivative of the displacement discontinuity at the 

left end of the cut was not isolated in /3/ and no expression was given for the coefficient 

accompanying this singularity. 

3. Numerical analysis of the solution. In the case when I&= x/2, we arrive at 

the problem of a crack which emerges orthogonally onto the line joining the half-planes. In 

accordance with /2/, the coefficients of the stress intensity take the form 

b=- zv/;t 4+4+(- 19 qc+ ] x+ (- v) 

dl = K, (1 + "2) + 3 -Y,, dz = K, (3 - YJ + i - y1 

6% is for the left vertex and k, for the right vertex). 

The values of k,and k, (the solid lines) were obtained for different combinations of 

materials (epoxide - aluminium, aluminium - steel, etc.) taking account of the effect of the 

latter on the index of the singularity in the solution at the left end of the cut (Fig.3, 

the broken line). The results which have been presented correspond to the data obtained in 

/2/ by approximate methods. 

Hence, the technique described in /l/ for solving the problem of a crack which emerges 

orthogonally onto the boundary of a half-plane enables one to obtain exact solutions for a 

number of problems concerned with cracks. As an analysis of /4/ shows, an identical approach 

to the problem of a semi-infinite stringer on the axis of symmetry of a wedge - shaped part 

of a plane also leads to an exact solution of the functional equation. 
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